Measurement and analysis of angle-resolved scatter from small particles in a cylindrical microchannel.
نویسندگان
چکیده
Scatter of a two-dimensional Gaussian beam of a rectangular cross section by individual particles suspended in a fluid in a cylindrical channel is modeled by using a full-wave approach. First, the internal and scattered fields associated with the cylindrical channel and the two-dimensional Gaussian beam are computed. The spatial variations of the computed electromagnetic field inside the channel indicate that particles and cells of sizes relevant to flow cytometry are subjected to essentially plane-wave illumination, and hence Lorenz-Mie theory is applicable for spherical particles. Further, it is assumed that the perturbation of the electromagnetic field in the channel that is due to the presence of a particle is negligible, allowing us to ignore the interactive scatter of the particle and the channel (they are electromagnetically uncoupled). This approximation is valid when the particle intercepts a small fraction of the total energy inside the channel and when the particle or cell has a low relative refractive index. Measurements of scatter from the channel agree with the analytical model and are used to determine the location of detectors to measure scatter from particles in the channel. Experimental results of accumulated scatter from single latex spheres flowing in the channel show good agreement with computed results, thereby validating the internal field and uncoupled scatter models.
منابع مشابه
Monte carlo simulation of varian clinac iX 10 MV photon beam for small field dosimetry
Background: The lack of lateral electronic disequilibrium (LED) becomes a main problem in small field. This factor affects the dose in target volume cannot predict correctly. In addition, utilization of high-energy linear accelerator (10 MV) can emit some unwanted particles (electron contamination). Therefore, the aim of this study was to characterize head linear accelerator (linac) Varian Clin...
متن کاملExperimental study of convective heat transfer coefficient of MgO nanofluid in a cylindrical microchannel heat sink
Convective heat transfer of MgO-water nanofluid in a microchannel heat sink is experimentally investigated in various concentrations of 0.01, 0.05, 0.1, and 0.6 wt%. The microchannel consisted of 48 parallel rectangular cross section channels with the height of 800 µm, width of 524 µm and length of 52 mm. A well stability duration (ca. 1 month) was resulted by a 180 min ultra-sonication of the ...
متن کاملNumerical Simulation of Particle Separation in the Fluid Flow in a Microchannel Including Spiral and Acoustic Regions
Particulate separation has many applications in medicine, biology and industry. In this research, the separation of polystyrene particles with a diameter of 10, 20 and 30 μm in the fluid flow of a microchannel is investigated. The microchannel consists of a spiral region and a straight region under the influence of acoustic waves. In the spiral region, the particles under hydrodynamic effects u...
متن کاملSize Distribution Measurement of Candle\'s Soot Nanoparticles by Using Time Resolved Laser Induced Incandescence
Time resolved laser induced incandescence (LII) technique is used to measure size distribution of soot nanoparticles of candle's flame. Pulsed Nd:YAG laser is used to heat nanoparticles to incandescence temperature and the resulting signal is measured. Mass and energy balance equations are numerically solved to calculate temperature of soot particles in low fluence regime. Assuming Plank black ...
متن کاملMeasurement Of Scatter Factors For Small Photon Fields Using Gaf chromic EBT2 Film
Introduction: Small field dosimetry is challenging for radiotherapy dosimetry. measurement of the output factor in the air and water (Sc, Scp) is one of the input parameters for commissioning of treatment planning systems and beam modeling. The aims of this study are to measured Sc,Scp for small fields with EBT2 and Ion chamber and design a appropriate mini-phantom for small fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 45 10 شماره
صفحات -
تاریخ انتشار 2006